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C Y L I N D E R S  O F  E L L I P T I C A L  C R O S S  S E C T I O N  
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It is shown that the problem of determining the thermal  res i s tance  between two long paral lel  
cyl inders  of elliptical c ross  section can be reduced to the corresponding problem for two in- 
finitely thin parallel  bands. The thermal  res is tance  of the sys tem is plot ted vs the geomet -  
r ical  dimensions.  

I .  The problem of calculating the thermal  res i s tance  between two long paral le l  cyl inders  of elliptical 
c ross  section situated in a homogeneous medium (Fig. 1) has a known solution for the limiting cases  shown 
in Fig. 2. 

In the f i rs t  two cases  (Fig. 2a, b), the thermal  res is tance  R per  unit length in longitudinal direct ion 
is 

1 K 
R = - ~  K--' (I) 

where X is the heat conductivity coefficient of the ambient medium, and K and K' are  complete elliptic in- 
tegra ls  of the f i rs t  kind, whose moduli k and k'  are  defined by the equations: 

a r 

K'E'  (V, k) - - E ' F '  (y, k) = ~ -b' ' (2) 

sin ~ u = K' ~ E' 
(I - -  k ~) K' ' (3) 

k' = v l  - - k  ~ (4) 

for the configuration shown in Fig. 2a, and by the formulas  

d' - -  2a' 
k =  - - - ,  k ' = ~ /  l - - k  2 

d' + 2 a '  
(5) 

for the configuration shown in Fig. 2b. In formulas  (2) and (3), K',  
incomplete elliptic integrals  of the second kind with modulus k' .  

For  the third case (Fig. 2c), we have 

R =  1_~_ Arch d_~__. 
~ 2a 

E ' ,  F '  (7, k) are  thenota t ionsfor  the 

(6) 

The general  case of elliptical cyl inders  with an a rb i t r a ry  rat io of the sere[axes a and b (Fig. 1), ap- 
parently,  has not been examined. In the following, it will be shown that by appropriate  conformal  mapping, 
this case can be reduced to one of the degenerate cases  shown in Fig. 2. 

2. We known from [1] that a multiply connected region D in the plane z = x + iy, bounded from the in- 
side m by smooth contours lk, can be t ransformed into a plane ~ = ~ + i?? with m slots paral le l  to the real  
axis. The mapping function, in this case ,  has the form 

r n  

le~l lk 
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Fig. I .  Symmetr ical ly  located elliptical cyl inders.  

a b c 

Fig. 2. Elliptic cyl inders  in the degenerate  cases :  a) infinitely 
thin bands; c) c i rcu la r  cyl inders .  

where t is the value of the variable z at the contour /k ;  ~k(t) is the rea l  par t  of the function f(z) at this con- 
tour.  By making point z in the region D approach point t o of the contour li, per forming the passage to the 
limit conventionally used for Cauchy integrals [2], and separat ing the real  f rom the imaginary  part ,  we a r -  
r ive at the equation 

?n 

J r 
k ~ i  ik 

where r is the radius vector  drawn from point t o on contour li to a point on the con tour /k ,  and O is the an-  
gle formed by this radius vector  and the normal  to contour l k directed toward the inter ior  of region D; the 
integral  over contour l i is t rea ted  as singular in Cauchy 's  sense. 

In our case of a doubly connected region D whose boundaries are  identical symmet r ica l ly  situated e l -  
l ipses (Fig. 1), the corresponding slots in the plane ~ are located also symmetr ica l ly  (Fig. 2a and b). Hence, 
of the two equations of type (8), it is sufficient to examine one equation: 

~' (t~ 2x(t~ ff ~ (t)c~ ~1 ; ~2(t)cosOdl~ (9) 

II l ,  

where,  for the configuration shown in Fig. la ,  ~ 2(x) = ~ l(x), while for the configuration shown in Fig. lb, 
2(-x) = -~  l(x). Solving Eq. (9), and substituting ~ 1 and ~ 2 into (7), we obtain the mapping function f(z). 

From the real  par t  of this function, one can obtain the values of ~ at the end points of the slots,  and from 
the imaginary part ,  the values of ~?l and 72 at these slots.  In this way, both the length of the slots and their  
position in the plane [ will be determined.  Since the procedure  for solving the problem is almost  the same 
in each of the cases  shown in Fig. 1, we may limit the analysis  to one of them - the case shown in Fig. la .  

3. The integral equation (9) is s imi lar  to the equation of the corresponding two-dimensional  problem 
in hydrodynamics [3], and lends itself to solution in the same way. By  represent ing the ellipse equations 
in pa ramet r i c  form: 

d 
x = a cos qo, y = -~- + b sin q~; 

d 
x = a c o s ~ ,  y - -  -~bsin~, 

2 
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the express ions  in the integrand of Eq. (9) can be reduced to the form 

~l cos 0 dl~ _ ~ (9) b d 9 
r 2a 1 - -  e 2 cos 2- 9 + 90 

2 

~cosOdl2 ~(~) { ~ r  26 ~ -  [ l - - c ~ 1 7 6  

(10) 

(11) 

where  fl = b/a; 6 = d/2a; ~ = ~ L ' - ~ ;  ~o 0 is the value of ~o at point t 0. Express ion  (10) can be represen ted  
in the form of a t r igonometr ic  s e r i e s  

[ 1  E ( 1 - - J ~ / k ( e o s k g o e o s k g _ s i n k g o s i n k g ) ]  dg, ~l cos 0 dll ~t (9) + 1 ~- ~ ] 
T k = l  

(12) 

and express ion  (11) in the form of a se r i e s  in powers of 1/6. By eliminating the case  where  6 is close to 
unity (the case of ve ry  closely situated el l ipses) ,  and limiting the analysis to t e r m s  with 1/6 3, instead of 
(11), we obtain 

~2cosOdl2 ~2(r {ao + ai--aobl 1 b~l} d , ,  (13) 
r - 28  ~ + 7 [ao ( b ~ - -  b,) - a ,  

where 

ao ------ sin ~2; bi ---- 1~ (sin 90 - -  sin 4); 

al = ~ -  [1 - -  cos(9o--~p)l; 

1 [(cos 90 - -  cos ~)2 + ~ (sin 9o - -  sin ~)~1. b2 = ~-  

It can be readi ly  seen that the quantit ies ~ 1(go), ~ 1(~o0), and ~ 2(r a re  identical functions of the i r  a r -  
guments ,  and the re fore  can be represen ted  by identical Four ie r  se r ies .  Byv i r tue  of the par i ty  of functions 

i(~0) and ~ 2(~o) and the sel f -evident  re la t ions  

t 1 ( 9 )  = - -  gl  (~  - -  9);  g ,  (90) = - -  gl  ( ~  - -  90); 

~ ,  (4 )  - -  - -  g~ (~  - -  4 )  

these s e r i e s  have the form: 

~l (9) =' ~ A2.§ cos (2n + 1) 9, 

~l (r = ~ A2n.i cos (2n + 1) 90, (14) 
n=:O 

~ (4) = ~ A~n+l cos (2n + 1) 4- 
?I~0 

By substituting (12) 
coefficients in front  of the cosines of like a rcs ,  we obtain 

whence 

where 

(13), and (14) into the bas ic  equation (9), per forming integration,  and equating the 

A1 = 2a 1 - -  13 A1 + ~ Al, A3 -~ 0 and so forth, 
1 + 8  

Ai a-pb 1+ ~ - - = a - - - -  
1 - - h  1 - - h  

882 ' 

(15) 

06) 
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Fig.  3. Curves  fo r  d e t e r m i n i n g  the t h e r m a l  r e s i s t a n c e  be tween  
the c y l i n d e r s  shown in Fig.  l a  (a) and l b  (b). 

and hence  we may wr i t e  

~i((P) = AicosqD; ~2(~P) = AlCOSap. (17) 

These  e x p r e s s i o n s  a re  f i r s t  app rox ima t ions  for  funct ions  ~l(go) and ~2(~o). In o r d e r  to obtain  the 
second  approx ima t ion ,  one mus t  subs t i tu te  (17) into the bas i c  Eq. (7) and in tegra te .  As shown in the ap -  
pendix,  as  a r e s u l t  of these  ope ra t ions  we obtain the funct ion 

~ = [ ( z )  = z +  z - - i - f )  - -aS+ V + (18) 

which for  points  on e l l ipse  1 (for z = tl) m a y  be app rox ima ted  in the f o r m  

f (h)  = ~, + i n~ 
a + b + bg (1 + g)(a + b)bxl 

a 2 x~+ y + y ,  

( u i - d )  (l + g ) ( a + b ) b (  d +y*) l  
(195 

w h e r e  g = h/(1 - h). 

Since f o r m u l a  (19) y ie lds  only an  a pp rox ima te  e x p r e s s i o n  for  func t ion  f(tl), the i m a g i n a r y  pa r t  of this  
funct ion does not r e m a i n  cons tan t  when  point  t 1 d i sp l ace s  i t se l f  a long e l l ipse  1, while the c o r r e s p o n d i n g  
point  in the plane r is d i sp laced ,  not a long a s t r a igh t  l ine pa ra l l e l  to the a b s c i s s a ,  but a long the cu rve  (195 
shaped  as  a n a r r o w  loop e longated  in d i r ec t i on  of the ~ axis .  The s m a l l e r  b as  c o m p a r e d  to a and a as  
c o m p a r e d  to d,  the c l o s e r  th is  loop a p p r o a c h e s  the r e q u i r e d  slot .  L imi t ing  o u r s e l v e s  to the  app rox ima t ion  
obta ined,  we  can d e t e r m i n e  the length of  the s lot  2a ~ as the d i f fe rence  be tween the va lues  of  ~1 for  x 1 = a 
and x I = - a ,  while  the spac ing  d r be tween  the s lo ts  can  be d e t e r m i n e d  as the sum of the va lues  of Vi for  Yl 
=(d/2) +b and Yl = (d/2) - b .  In this  way,  we obtain  

2a'=2A1 1 852 (453+I )  ' 
(205 

(215 

It can  be shown that  when the condi t ion  

82~(1  +[3)[3, i.e., d* ~ 4 (a -t- b) b, (22) 

which exc ludes  the case  of  c lose ly  s i tua ted  e l l ipses ,  is fulf i l led,  the second  approx ima t ion  does  not  i n t ro -  
duce any app rec i ab l e  i m p r o v e m e n t s  to the va lues  of a T and dL* 

* T h u s ,  for  fi = 1 and 62 = 2, the next  app rox ima t ion  y ie lds  va lues  for  a"  and d" which di f fer  by l e s s  than 
1.5% f r o m  the va lues  fo r  a v and &. 
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Figu re  3a shows plots  of 5 '  =dV2a' vs  5 = d/2a for  va r ious  va lues  of fi = b/a. For  va lues  of  5 and fl 
tha t  sa t i s fy  condi t ion  (22), the c u r v e s  a r e  p lo t ted  f r o m  f o r m u l a s  (20) and (21). The ini t ial  po r t ions  of the 
c u r v e s  a re  obtained by in terpola t ion ,  al lowing that  5 '  = 0 for  d = 2b, i . e . ,  for  6 =/3. 

The  f o r m u l a s  (20), (21) and the cu rves  in Fig.  3a define the g e o m e t r i c a l  d i m e n s i o n s  of  the s y s t e m s  
of  bands  that  a r e  equivalent  to the e l l ip t ica l  cy l inders  under  cons ide ra t ion ,  i . e . ,  fo r  which  the t h e r m a l  
r e s i s t a n c e  R is the s a m e  as that  of  the cy l inde r s .  By us ing fu r the r  the f o r m u l a s  (1)-(4), it is  poss ib le  to  
obtain  va lues  of R that  c o r r e s p o n d  to g iven va lues  of  a ,  b, and d. The c o r r e s p o n d i n g  c u r v e s  a r e  p lo t ted  
in Fig. 3a,  as  a funct ion of  6 = d/2a. 

4. In the case  of cy l inde r s  a r r a n g e d  acco rd ing  to Fig.  3b, the p rob l em is s o l v e d  in a s i m i l a r  fashion.  
L imi t ing  the ana lys i s ,  as  b e f o r e ,  to  the second  approx imat ion ,  fo r  the d imens ions  of  the equivalent  s y s -  
t em of bands  (Fig.  2b), we obta in  

2 a , = 2 a  1 + ~  [1 �9 II ] (23) 
1 + h  882(4~ - 2 - 1 )  ' 

d ' = d [ 1 - [  46 ~-8952 ] _ 1  ' (24) 

h ~(1 +1~) b d g = - - ,  h +  , ~ = - - ,  ~ = - - .  
1 + h 863 a 2a 

w h e r e  

The  c u r v e s  tha t  c o r r e s p o n d  to this  case  a r e  plot ted in Fig.  3b as  a funct ion of  5 = d/2a. 

A P P E N D I X  

In o r d e r  to obtain the second  approx ima t ion  for  the mapping  funct ion g = f(z), we subst i tu te  07 )  into 
the init ial  e x p r e s s i o n  (7). As a r e su l t ,  we have 

A1 ~ c~ cIt-- AI f c~ dr. (25) 
~ = f ( z ) = z - -  2~i l - - z  2a i  , t.--z 

la 12 

We evaluate  the f i r s t  of  the two in teg ra l s  in this  e x p r e s s i o n  

1 f cos r dt. 
J1 = ~ - T  .j t - - z  

Ii 

By in t roduc ing  a new va r i ab l e  w = (z - id)/2 and co r r e spond ing ly  T = (t -- id) /2,  for  cos  cp we get  

._ a_a.__- b - -  
c o s ~ - c ~  [ a , ~ ' ~ - - d ] ,  

w h e r e  c 2 = a 2 - b2; gl m a y  be then r e p r e s e n t e d  in the f o r m  

J~ = c -~  I~, 

w h e r e  

I b .~ __ c~ 
1 a dx. 

Since the in tegrand  has  b r a n c h  points  (r  = +c) inside the contour  l i ,  we use  the r e s idue  t h e o r e m  in a 
r eg ion  ex te rna l  with r e s p e c t  to 11 fo r  ca lcu la t ing  Ii: 

I1 = - -  Res (oo) - -  Res (w). 

It can be r ead i ly  shown that  

b- -a  b 
Res(~)  = w; R e s ( w ) = w - - - -  ~ ' w 2 - - d  . 

a a 

1 1 0 8  



In this way, returning to the variable z, for the integral J1 we get 

J1 = - -  ~ -  W 

For  the second in t eg ra l ,  we get in the same  way 

]. 
By substituting J1 and J 2 into (25), we a r r ive  at formula  (18). 

Setting z = t I = x I + iy 1 in (18), represent ing  the f i rs t  radical  in this formula  in the fo rm 

t l  - -  i - - c  ~ = T t ~ - -  - - ~  x l  - -  i -~-~ , 

and the second radical  ha the form ~ 

and taking the f i rs t  two t e rms  of the s e r i e s ;  we obtain formula  (19). 

Io 
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