THERMAL RESISTANCE BETWEEN TWO LONG PARALLEL
CYLINDERS OF ELLIPTICAL CROSS SECTION

L.A, Tseitlin UDC 536,12

It is shown that the problem of determining the thermal resistance between two long parallel
cylinders of elliptical cross section can be reduced to the corresponding problem for two in-
finitely thin parallel bands, The thermal resistance of the system is plotted vs the geomet-
rical dimensions,

1. The problem of calculating the thermal resistance between two long parallel cylinders of elliptical
cross section situated in a homogeneous medium (Fig. 1) has a known solution for the limiting cases shown
in Fig. 2.

In the first two cases (Fig. 2a, b), the thermal resistance R per unit length in longitudinal direction
is
1

where A is the heat conductivity coefficient of the ambient medium, and K and K' are complete elliptic in~
tegrals of the first kind, whose moduli k and k' are defined by the equations:
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for the configuration shown in Fig. 2a, and by the formulas
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for the configuration shown in Fig, 2b. In formulas (2) and (3), K', E', F'(7, k) are the notationsfor the
incomplete elliptic integrals of the second kind with modulus k'.

For the third case (Fig.2c), we have

R=L Archi.

A 2a ©

The general case of elliptical cylinders with an arbitrary ratio of the semiaxes @ and b (Fig. 1), ap-
parently, has not been examined. In the following, it will be shown that by appropriate conformal mapping,
this case can be reduced to one of the degenerate cases shown in Fig, 2.

2. We known from [1] that a multiply connected region D in the plane z = x + iy, bounded from the in-
side m by smooth contours I, can be transformed into a plane ¢ = £ + in with m slots parallel to the real
axis. The mapping function, in this case, has the form
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Fig. 2. Elliptic cylinders in the degenerate cases: a) infinitely
thin bands; ¢) circular cylinders.

where t is the value of the variable z at the contour I); £ (t) is the real part of the function f(z) at this con~
tour. By making point z in the region D approach point t; of the contour [;, performing the passage to the
limit conventionally used for Cauchy integrals [2], and separating the real from the imaginary part, we ar-
rive at the equation

E; (fa) = 2x (to) — E ;15 Ek—(t)—c‘rls—e_di, o
k=] lk

where r is the radius vector drawn from point t, on contour I; to a point on the contour Iy, and 9 is the an-
gle formed by this radius vector and the normal to contour Ij directed toward the interior of region D; the
integral over contour Ij is treated as singular in Cauchy's sense.

In our case of a doubly connected region D whose boundaries are identical symmetrically situated el-
lipses (Fig.1), the corresponding slots in the plane ¢ are located also symmetrically (Fig.2a and b). Hence,
of the two equations of type (8), it is sufficient to examine one equation:

§1(to)=2x(to)“;1j 3 (t)c;)sﬂdll _?i_j‘ gg(t)c;)sedlz , 9)
A I

where, for the configuration shown in Fig. 1a, £,(x) = £,(x), while for the configuration shown in Fig. 1b,
£y—x) = —£(x). Solving Eq. (9, and substituting £, and £, into (7), we obtain the mapping function f(z),
From the real part of this function, one can obtain the values of ¢ at the end points of the slots, and from
the imaginary part, the values of 1y and 7, at these slots. In this way, both the length of the slots and their
position in the plane ¢ will be determined. Since the procedure for solving the problem is almost the same
in each of the cases shown in Fig. 1, we may limit the analysis to one of them — the case shown in Fig, 1a.

3. The integral equation (9) is similar to the equation of the corresponding two-dimensional problem
in hydrodynamics [3], and lends itself to solution in the same way. 'By representing the ellipse equations
in parametric form:

X = @acos g, y:% + bsing;

X = acos, y=~%+bsimp,
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the expressions in the integrand of Eq,. (9) can be reduced to the form

cos 0.d}, b d
500 @ . : (10)
d | —etcost 2T R
2
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" 2% % {1 —cos{p,— )]——simp}

{ 14 i (sing, — siny) + —— - [(cos @y — cos P)? + B2 (sin gp— sinp) ]} 1d1p, (11)

where 8 = b/a; 6 =d/2a; ¢ = V1 — Bz; @, is the value of ¢ at point t;. Expression (10) can be represented
in the form of a trigonometric series

- — B\
Sicosbdh =& (p) [—é— - 2:(%—:—2—) (cos k@, cos k(p——sinkcposinkcp)] deg, (12)
r T
k=1

and expression (11) in the form of a series in powers of 1/8. By eliminating the case where 8 is close to
unity (the case of very closely situated ellipses), and limiting the analysis to terms with 1/8%, instead of
{11), we obtain

EocosOdly _ Ea(0)
r 26
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where

a, =—sinY; by = P (sing, — sin);
a =L (1~ cos g
by = - [(cos go—cos )" + B* s oy — sin 9L

It can be readily seen that the quantities £,(¢), £i(@y), and £,() are identical functions of their ar-
guments, and therefore can be represented by identical Fourier series, Byvirtue of the parity of functions
£,{¢) and &,(p) and the self-evident relations

E(@) = —Ei(m—o) & () =—E (T —qo);
B () =—E(m—1

these series have the form:

8@ =S Aucos@n+ 1o,

=20

E (9o = 2 Agpyrcos (2n 4+ 1) gy, (149
n=0

E(p)= 2 Agyiy 008 (2n + 1) .
n==0

By substituting (12) (13), and (14) into the basic equation (9), performmg integration, and equating the
coefficients in front of the cosines of like arcs, we obtain

A =2 — :“5 A +—P A, A =0 and so form,

+B 45°
whence
A= a+b —a 1+p ’
I —h I —h (15)
where
_Bd+p (16)
8%
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Fig.3. Curves for determining the thermal resistance between
the cylinders shown in Fig.1la (a) and 1b (b).

and hence we may write
£ (@) = Arcosq;  Ex () = Ajcos . (17

These expressions are first approximations for functions £,(¢) and £,(¢). In order to obtain the
second approximation, one must substitute (17) into the basic Eq. (7) and integrate. As shown in the ap-
pendix, as a result of these operations we obtain the function

Ab
L=f@) =24 azl_bz[zz—‘/(z_i_‘;—>2—a2+b2~‘/{z+i%)2—a2+b2], (18)

which for points on ellipse 1 (for z = t,) may be approximated in the form

a--b- bg (1 -+ g)(a-+b)bx,

JEnEEn
a +g>(a+b>b(%+y1)

I CEEER)

Flt) =& +in =

X+

(19)

where g = h/(1 — h).

Since formula (19) yields only an approximate expression for function f(t;), the imaginary part of this
function does not remain constant when point t; displaces itself along ellipse 1, while the corresponding
point in the plane ¥ is displaced, not along a straight line parallel to the abscissa, but along the curve (19)
shaped as a narrow loop elongated in direction of the £ axis. The smaller b as compared to @ and a as
compared to d, the closer this loop approaches the required slot. Limiting ourselves to the approximation
obtained, we can determine the length of the slot 2a' as the difference between the values of £, for x; =@
and x; = —a, while the spacing d' between the slots can be determined as the sum of the values of 1, for y;
=(d/2)+b and y; = (d/2) —b. In this way, we obtain

. . p 20
2a_2Al[1 —"——852(452+1)]' (20)
d':d[l—-—Qg‘?—], ' (21)
1 —
45°

It can be shown that when the condition
8> +P)B, ie, d®>4(a+b)b, (22)

which excludes the case of closely situated ellipses, is fulfilled, the second approximation does not intro-
duce any appreciable improvements to the values of a* and d'.*

*Thus, for 8 =1 and 6% = 2, the next approximation yields values for " and d" which differ by less than
1.5% from the values for a' and d'.
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Figure 3a shows plots of 8' =d"/2a' vs 6 = d/2a for various values of 8 =b/a. For values of & and 8
that satisfy condition (22), the curves are plotted from formulas (20) and (21). The initial portions of the
curves are obtained by interpolation, allowing that 6' = 0 for d = 2b, i.e., for 0 = 3.

The formulas (20), (21) and the curves in Fig. 3a define the geometrical dimensions of the systems
of bands that are equivalent to the elliptical cylinders under consideration, i.e., for which the thermal
resistance R is the same as that of the cylinders. By using further the formulas (1)-(4), it is possible to
obtain values of R that correspond to given values of ¢, b, and d. The corresponding curves are plotted
in Fig, 3a, as a function of 6 = d/2a.

4, In the case of cylinders arranged according to Fig. 3b, the problem is solved in a similar fashion,
Limiting the analysis, as before, to the second approximation, for the dimensions of the equivalent sys-
tem of bands (Fig.2b), we obtain

f_oy 1B [, . B ] (23)
=2y [ 852 (46 —1) |
’ 8g &
& =d1 , 24
{ +45‘2—1} (29

where
oy BUER b

» T s

14 86° a

g:
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The curves that correspond to this case are plotted in Fig. 3b as a function of § = d/2a.

APPENDIX

In order to obtain the second approximation for the mapping function ¢ = f(z), we substitute (17) into
the initial expression (7). As a result, we have

t=f@=2— Al. 8P 4 Al_ S‘ sy (25)
2ni t—z 2ni ) t—z

Iy 2

We evaluate the first of the two integrals in this expression

J,=J_‘§_99_s_¢_ dt.
o 2m i t—z

I

By introducing a new variable w = (z — id)/2 and correspondingly 7 = (t — id)/2, for cos ¢ we get

. a | b Y
COSPp =——1T—— JF T —C s
c a

where c¢? = a? —b% J; may be then represented in the form
a
J 1= ‘&? I 1
where
(et
a
11 = 2.Tti . T—w d T.

I

Since the integrand has branch points (7 = #¢) inside the contour 7;, we use the residue theorem in a
region external with respect to I, for calculating I;:

I, = — Res {o0) — Res (w).

It can be readily shown that

Res (o) _b—a w; Res(zxu)=zfz)—i R — .
a a
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In this way, returning to the variable z, for the integral J; we get

b d 2
J1=——7|:z—~i—2-——'l/ (z——i—g-) —c* }

For the second integral, we get in the same way

b d .d\ o,
Jg=:~—~—cz—[z+t—2—-—l/ (z+z——2—) —c* ]

By substituting J; and J, into (25), we arrive at formula (18).

Setting z = t; = x; + iy; in (18), representing the first radical in this formula in the form

—l— —=—f—— 5 —i —,
(' 2) bt ap 2

and the second radical in the form

1/'+’d)2 el
=) — =h e —— — ...
( 2 2 2(t1+i%)

and taking the first two terms of the series, we obtain formula (19).
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